Stochastic Processes ( Fall 2014 ) Spectral representations and ergodic theorems for stationary stochastic processes Stationary stochastic processes

نویسنده

  • Athanasios Kottas
چکیده

A stochastic process X is strongly stationary if its fdds are invariant under time shifts, that is, for any (finite) n, for any t0 and for all t1, ..., tn ∈ T , (Xt1 , ..., Xtn) and (Xt1+t0 , ..., Xtn+t0) have the same distribution. A stochastic process X is weakly stationary if its mean function is constant and its covariance function is invariant under time shifts. That is, for all t ∈ T , E(Xt) = μ, and for all ti, tj ∈ T , Cov(Xti , Xtj ) = c(ti − tj), a function of ti − tj only. (Note that the definition of weak stationarity implicitly assumes existence of first and second order moments of the process.)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confidence Interval Estimation of the Mean of Stationary Stochastic Processes: a Comparison of Batch Means and Weighted Batch Means Approach (TECHNICAL NOTE)

Suppose that we have one run of n observations of a stochastic process by means of computer simulation and would like to construct a condifence interval for the steady-state mean of the process. Seeking for independent observations, so that the classical statistical methods could be applied, we can divide the n observations into k batches of length m (n= k.m) or alternatively, transform the cor...

متن کامل

Second Moment of Queue Size with Stationary Arrival Processes and Arbitrary Queue Discipline

In this paper we consider a queuing system in which the service times of customers are independent and identically distributed random variables, the arrival process is stationary and has the property of orderliness, and the queue discipline is arbitrary. For this queuing system we obtain the steady state second moment of the queue size in terms of the stationary waiting time distribution of a s...

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

Long Range Dependence

The notion of long range dependence is discussed from a variety of points of view, and a new approach is suggested. A number of related topics is also discussed, including connections with non-stationary processes, with ergodic theory, self-similar processes and fractionally differenced processes, heavy tails and light tails, limit theorems and large deviations.

متن کامل

The Uniform Mean-Square Ergodic Theorem for Wide Sense Stationary Processes

It is shown that the uniform mean-square ergodic theorem holds for the family of wide sense stationary sequences, as soon as the random process with orthogonal increments, which corresponds to the orthogonal stochastic measure generated by means of the spectral representation theorem, is of bounded variation and uniformly continuous at zero in a mean-square sense. The converse statement is also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014